MTH 150 Chapter 5

Alejandro Franco

November 12, 2021

1 Reflection

When it came to this chapter i needed a lot of help because i was never proficient in working with circles. I had to book many tutoring appointments to help me out throughout the exercises

I had a little bit of trouble in section 5.1 at first because i had forgotten what equations i had to use in order to figure out the radius as well as distance between points. Once i remembered $(x-h)^{2}+(y-k)^{2}=r^{2}$ i was able to complete most of the exercises.

I found section 5.2 really troubling since we were working with distance over time, i got help from tutors but still find it hard to understand all the inputs.

As for section 5.3 ,5.4 and 5.5 i found to be most simple since we were mainly working with sin,cos,tan. Once i figured out the variables putting in the inputs and solving out the equation was pretty straight forward.
I could say i still need more practice in this chapter as I'm still not pretty confident in circles.

2 Section 5.1 Circles

$2.11,3,5,7,9,11,13$

Find the distance between the points $(5,3)$ and $(-1,-5)$.

$$
\begin{gathered}
(5,3)(-1,-5) \\
\frac{x^{2}-x^{1}}{y^{2}-x^{1}} \\
\text { output }-6 \text { and }-8 \text { pluginPT } \\
a^{2}+b^{2}=c^{2}
\end{gathered}
$$

10
.Write an equation of the circle centered at $(8,-10)$ with radius 8 .

$$
\begin{aligned}
& (x-h)^{2}+(y-k)^{2}=r^{2} \\
& (x-8)^{2}+(y-10)^{2}=8^{2}
\end{aligned}
$$

5 Write an equation of the circle centered at (7, -2) that passes through $(-10,0)$.

$$
\begin{gathered}
(x-7)^{2}+(y-(-2))^{2}=r^{2} \\
(x-7)^{2}+(y+2)^{2}=r^{2}
\end{gathered}
$$

7 Write an equation for a circle where the points (2, 6) and (8, 10) lie along a diameter.

$$
\begin{gathered}
d=\sqrt{(8-2)^{+10-6^{2}}} \\
\sqrt{6^{2}+4^{2}}=\sqrt{52} \\
2 \sqrt{13}
\end{gathered}
$$

$$
\begin{gathered}
h=\frac{8+2}{2}=\frac{10}{2}=5 \\
k=\frac{10+6}{2}=8 \\
(x-5)^{2}+(y-8)^{2}=13
\end{gathered}
$$

9 Sketch a graph of $(x 2)^{2}+(y+3)^{2}=9$.
11 Find the y intercept(s) of the circle with center (2, 3) with radius 3.

$$
\begin{gathered}
(x-2)^{2}+y-3^{2}=3^{2} \\
4+(y-3)^{2}=9 \\
(y-3)^{2}=5 \\
y-3=+-\sqrt{5} \\
\text { yintis }(0,3)+/-\sqrt{5}
\end{gathered}
$$

13 At what point in the first quadrant does the line with equation $y=2 x+5$ intersect a circle with radius 3 and center $(0,5)$

$$
\begin{gathered}
(x-0)^{2}+(y-5)^{2}=3^{2} \\
x^{2}+((2 x+5)-5)^{2}=9 \\
x^{2}+2 x^{2}=9 \\
5 x^{2}=9 \\
x^{2}=\frac{9}{5} \\
x=+/-\frac{9}{5} \\
\sqrt{\frac{9}{5}}, 2 x+5
\end{gathered}
$$

Comments

This was pretty simple, after having a refresher on the subject this section i found to be very easy.

3 Section 5.2 Angles

$3.15,11,15,25,26$

5 Convert the angle

$$
\frac{5 \pi}{6}
$$

from radians to degrees.

$$
\left(\frac{5 \pi}{6}\right) \frac{270}{37 / 2}=150
$$

11 Find the angle between 0 and 2π in radians that is coterminal with the angle

$$
\begin{gathered}
\frac{26 \pi}{9} \\
\frac{26 \pi}{9}-2 \pi=2.79 \\
2.79 / \pi=\frac{8}{9} \pi
\end{gathered}
$$

15 On a circle of radius 7 miles, find the length of the arc that subtends a central angle of 5 radians.

$$
\begin{gathered}
\text { length }=\theta / 360 \\
5\left(\frac{350}{2 \pi}=2.86\right. \\
\frac{2.86}{360}(2 \pi(7) \\
.007(2 \pi)=.049=34.94 \\
\text { length }=35
\end{gathered}
$$

25 A truck with 32-in.-diameter wheels is traveling at $60 \mathrm{mi} / \mathrm{h}$. Find the angular speed of the wheels in rad/min. How many revolutions per minute do the wheels make?

$$
\begin{gathered}
r=32 / 2=16 \\
v=r w \\
\frac{60 m p h}{16 i n} \\
\frac{60(63360)}{16} \\
v=237600\left(\frac{1}{60}=3960\right. \text { sp } \\
\text { speed } \frac{1}{2 \pi}=\text { revs } \\
3960\left(\frac{1}{2 \pi}=\right.\text { revs }
\end{gathered}
$$

26 A bicycle with 24-in.-diameter wheels is traveling at $15 \mathrm{mi} / \mathrm{h}$. Find the angular speed of the wheels in rad/min. How many revolutions per minute do the wheels make?

$$
\begin{gathered}
r=24 / 2=12 \\
v=r w \\
\frac{15 m p h}{12 i n} \\
\frac{15(63360)}{12} \\
v=237600\left(\frac{1}{15}=3960\right. \text { sp } \\
\text { speed } \frac{1}{2 \pi}=\text { revs } \\
3960\left(\frac{1}{2 \pi}=\right.\text { revs }
\end{gathered}
$$

Comments

4 Section 5.3 Points on Circles Using Sine and Cosine

$4.1 \quad 1,3,5,7$

1 Find the quadrant in which the terminal point determined by t lies if a. $\sin (\mathrm{t}){ }_{i} 0$ and $\cos (\mathrm{t})_{i} 0$ b. $\sin (\mathrm{t}) \boldsymbol{i} 0$ and $\cos (\mathrm{t}){ }_{i} 0$
lieiquadrant3and4
3 The point P is on the unit circle. If the y-coordinate of P is $\frac{3}{5}$, and P is in quadrant II, find the x coordinate..

$$
\begin{gathered}
x^{2}+y^{2}=r^{2} \\
x^{2}+\frac{3^{2}}{5}+1^{2} \\
x^{2}+\frac{9}{25}=1 \\
x^{2}=\sqrt{\frac{9}{25}} \\
+/-\frac{4}{5}
\end{gathered}
$$

5 If $\cos (\theta)=\frac{1}{7} a n d \theta i$ sinthe4thquadrant, , $\operatorname{ind} \sin (\theta)$..

$$
\begin{gathered}
\cos =\frac{a d j}{h y p} \\
\cos \frac{1}{7} \\
\frac{4 \sqrt{3}}{7} \\
.98
\end{gathered}
$$

7 If $\sin (\theta)=\frac{3}{8}$ and

$$
\theta
$$

is in the $2 n d$ quadrant, find $\cos (\theta)$.

$$
\begin{gathered}
\frac{9}{64}+\cos \theta=1 \\
\cos =\frac{55}{64}=\sqrt{\frac{55}{8}} \\
-\sqrt{\frac{55}{8}}
\end{gathered}
$$

11 For each of the following angles, find the reference angle and which quadrant the angle lies in. Then compute sine and cosine of the angle.
A.quadrant III(negative)

$$
\begin{aligned}
& \operatorname{Sin} \frac{5 \pi}{4}=-\sin \frac{\pi}{4}=-\sqrt{\frac{2}{2}} \\
& \operatorname{Cos} \frac{5 \pi}{4}=-\operatorname{Cos} \frac{\pi}{4}=-\sqrt{\frac{2}{2}}
\end{aligned}
$$

B.quadrant III(negative)

$$
\begin{gathered}
\sin \frac{7 \pi}{6}=-\sin \frac{\pi}{6}=-\frac{1}{2} \\
\cos \frac{7 \pi}{6}=-\cos \frac{\pi}{6}=-\sqrt{\frac{3}{2}}
\end{gathered}
$$

C. Quadrant IV (sin-, $\cos +$)

$$
\begin{aligned}
& \sin \frac{5 \pi}{3}=-\sin \frac{\pi}{3}=-\sqrt{\frac{3}{2}} \\
& \cos \frac{5 \pi}{3}=-\cos \frac{\pi}{3}=-\sqrt{\frac{1}{2}}
\end{aligned}
$$

D.Quadrant II ($\sin +, \cos -)$

$$
\begin{aligned}
& \sin \frac{3 \pi}{4}=\sin \frac{\pi}{4}=\sqrt{\frac{2}{2}} \\
& \cos \frac{3 \pi}{4}=\cos \frac{\pi}{4}=-\sqrt{\frac{2}{2}}
\end{aligned}
$$

13 Give exact values for $\sin (\theta)$ and $\cos (\theta)$ for each of these angles.

$$
\begin{aligned}
\operatorname{Sin} \frac{5 \pi}{4} & =-\sin \frac{\pi}{4}=-\sqrt{\frac{2}{2}} \\
\operatorname{Cos} \frac{5 \pi}{4} & =-\operatorname{Cos} \frac{\pi}{4}=-\sqrt{\frac{2}{2}} \\
\sin \frac{7 \pi}{6} & =-\sin \frac{\pi}{6}=-\frac{1}{2} \\
\cos \frac{7 \pi}{6} & =-\cos \frac{\pi}{6}=-\sqrt{\frac{3}{2}} \\
\sin \frac{5 \pi}{3} & =-\sin \frac{\pi}{3}=-\sqrt{\frac{3}{2}} \\
\cos \frac{5 \pi}{3} & =-\cos \frac{\pi}{3}=-\sqrt{\frac{1}{2}} \\
\sin \frac{3 \pi}{4} & =\sin \frac{\pi}{4}=\sqrt{\frac{2}{2}} \\
\cos \frac{3 \pi}{4} & =\cos \frac{\pi}{4}=-\sqrt{\frac{2}{2}}
\end{aligned}
$$

Comments

This was pretty simple, had to be careful when i inputting the right variables

5 Section 5.4 The Other Trigonometric Functions

$5.11,9,17,27$
1 if

$$
\theta=\frac{\pi}{4}
$$

find exact values for $\sec (), \csc (), \tan (), \cot ()$.

$$
\begin{gathered}
\sec \frac{\pi}{4}=\frac{1}{\cos (\pi / 4)}=\frac{2}{\sqrt{2}} \\
\csc \frac{\pi}{4}=\frac{1}{\sin (\pi / 4)}=\frac{2}{\sqrt{2}} \\
\tan \frac{\pi}{4}=\frac{\sqrt{2}}{\cos (\pi / 4)} \\
\cot \frac{\pi}{4}=\frac{1}{\tan (\pi / 4)} \\
1
\end{gathered}
$$

9 If

$$
\begin{gathered}
\sin \theta=\frac{3}{4} \\
\cos \theta==\sqrt{1-\sin ^{2} \theta}
\end{gathered}
$$

17 Simplify each of the following to an expression involving a single trig function with no fractions.

$$
\begin{gathered}
c \text { csctan } \\
\frac{1}{\sin }\left(\frac{\sin }{\cos }=\frac{1}{\cos }=\sec \right.
\end{gathered}
$$

27 Prove the identities.

$$
\begin{gathered}
\frac{\sin ^{2} \theta}{1+\cos \theta}=\frac{1-\cos \theta}{1+\cos \theta} \\
1-\cos \theta
\end{gathered}
$$

6 Section 5.5 Right Triangle Trigonometry

$6.11,3,17,27$

1 In each of the triangles below, find $\sin (A), \cos (A), \tan (A), \sec (A), \csc (A), \cot (A)$.

$$
\begin{gathered}
h=10^{2}+8^{=} 164 \\
h=\sqrt{164}=2 \sqrt{41} \\
\sin =\frac{10}{2 \sqrt{41}}=\frac{5}{\sqrt{41}} \\
\cos =\frac{8}{2 \sqrt{41}}=\frac{4}{\sqrt{41}} \\
\tan =\frac{5}{4} \\
\sec =\frac{1}{\frac{4}{\sqrt{41}}} \\
\frac{\sqrt{41}}{4} \\
\csc \frac{1}{\frac{5}{\sqrt{41}}} \\
\frac{\sqrt{41}}{5} \\
\frac{1}{\frac{5}{41}} \\
\frac{4}{5}
\end{gathered}
$$

3 In each of the following triangles, solve for the unknown sides and angles.

$$
\begin{gathered}
\frac{7}{c}=\frac{7}{\frac{1}{2}} \\
\frac{7}{\frac{1}{\sqrt{3}}}=7 \sqrt{3}
\end{gathered}
$$

9 A 33-ft ladder leans against a building so that the angle between the ground and the ladder is 80°. How high does the ladder reach up the side of the building?

$$
\begin{gathered}
\sin (80)=\frac{x}{33} \\
x=32.49
\end{gathered}
$$

19 Find the length x.

$$
\begin{gathered}
\sin (80)=\frac{x}{33} \\
x=32.49
\end{gathered}
$$

This was fairly simple, got a little lost when trying to find the asymtope points as its been a while but the work was easy

