MTH 150 Chapter 4

Alejandro Franco

October 29, 2021

1 Reflection

When it came to this chapter i had to refresh my memory on logarithm functions and properties for this section i relied heavy on my graphing calculator for help.

I had a little bit of trouble in section 4.1 and 4.2 at first because i had forgotten most rules for logs. Once i looked back at the expressions i was able to complete this section quite easily

I found section 4.3 really easy as all i had to do was use the expression $b^{a}=c$ rewrite all the logarithm equations

As for section 4.4 i found it o be most difficult as knowing the differences in the logs was a bit complicated for me. I had to refer back to the answer solution to double check my work.Im still a bit unsure of how the use the expressions

In section 4.5 i found it to be pretty easy since i used my calculator to graph the log functions to figure out its domain and vertical asymtope

2 Section 4.1 Exponential Functions

$2.17,13,23$

1. A population numbers 11,000 organisms initially and grows by 8.5 percent each year. Write an exponential model for the population.

$$
\begin{gathered}
F(x)=a b^{x} \\
b=(1+r) \\
b=1.085 \\
f(x)=11,000(1.085)^{x}
\end{gathered}
$$

.Find a formula for an exponential function passing through the two points.(0,6), $(3,750)$

$$
\begin{gathered}
(0,6),(3,750) \\
f(x)=a b^{x} \\
f(0)=a b^{0} \\
f(0)=6 \\
a=6 \\
f(x)=6 b^{x} \\
\text { plugin } 750 \\
750=6(b)^{3}=b=5 \\
f(x)=6(5)^{x}
\end{gathered}
$$

23 Describe the long run behavior, as $\mathrm{x} \rightarrow$ and $\mathrm{x} \rightarrow$ of each function

$$
f(x)=-5\left(4^{x}\right)-1
$$

Asxapproaches $\infty f(x)$ approaches $-\infty$
As (x) approaches $\infty f(x)$ approaches $-\infty$

4^{x} ismultipliedbyanegative

Comments

This was pretty simple, after having a refresher on the subject this section i found to be very easy.

3 Section 4.2 Graphs of Exponential Functions

3.1 11,23

11 Sketch a graph of each of the following transformations of $f(x)=\mathscr{2}^{x} f(x)=$ 2^{x}

23 A radioactive substance decays exponentially. A scientist begins with 100 milligrams of a radioactive substance. After 35 hours, 50 mg of the substance remains. How many milligrams will remain after 54 hours?

$$
\begin{gathered}
f(x)=a(b)^{x} \\
a=100 \\
100(50)^{x} \\
f(x)=100(0.98031)^{x} \\
f(x)=100(0.98031)^{5} 4 \\
f(x)=33.58 \text { milligrams }
\end{gathered}
$$

Comments

This was pretty simple, i had trouble though figuring out the word problems as figuring out the inputs were difficult to find.

4 Section 4.3 Logarithmic Functions

$4.11,9,17,41,65$
1 Rewrite each equation in exponential form

$$
\begin{gathered}
\log 4(q)=m \\
\log b(C)=a \\
b^{a}=c \\
4^{m}=q
\end{gathered}
$$

9 Rewrite each equation in logarithmic form.

$$
\begin{gathered}
4^{x}=y \\
b^{a}=c \\
\log b C=q \\
\log 4=7=x
\end{gathered}
$$

17 Solve for x.

$$
\begin{gathered}
\log 3(x=2) \\
b^{a}=c \\
3^{2}=x \\
x=9
\end{gathered}
$$

41

$$
\begin{gathered}
b^{a}=C \\
5^{x}=14 \\
\log 5^{1} 14=x \\
x=1.639
\end{gathered}
$$

65 The population of Kenya was 39.8 million in 2009 and has been growing by about 2.6 percent each year. If this trend continues, when will the population exceed 45 million?

$$
\begin{gathered}
y=a b^{t} \\
b=(1+r) \\
2.6=1.026 b \\
f(t)=4.5 \text { million } \\
\frac{45=(39.8)(1.026)^{t}}{39.8} \\
4.78 \text { years }
\end{gathered}
$$

Comments

This was pretty simple, had to be careful when i inputting the right variables

5 Section 4.5 Graphs of Logarithmic Functions

$5.11,2,3,4$
1

$$
f(x)=\log (x-5)
$$

Domain $=x$; 5
$(V A)=x=5$

2

$$
\ln (3-x)
$$

Domain $=x j 3$
$(V A)=x=3$

3

$$
\log (3 x+1)
$$

Domain $x i$

$$
\frac{1}{3}
$$

(VA) $x=$

4

$$
3 \log (-x)+2
$$

Domain $=x ; 0$
(VA) $=x=0$
This was fairly simple, got a little lost when trying to find the asymtope points as its been a while but the work was easy

