MTH 150 Chapter 3

Alejandro Franco
October 15, 2021

1 Reflection

I found mostly sections $3.1-3.2$ simple just because I have seen most of these problems in high school.

I had a little bit of trouble in section 3.2 on question 27. I was a bit confused how i should use the information i was given to solve the height of the ball in seconds.After a little review online i was able to get my desired outcome.

I found section 3.3 really easy as all i had to do was factor out my equation in order to get my real zeroes

As for section 3.4 i found it o be pretty simple since its basic plotting information that is given from the data. I also used graphs to help me find the points and was able to find all real possible zeroes

In section 3.7 i found it to be pretty easy as i worked with points and asymtope back in high school. Majority of the work felt pretty similar.

Sometimes when it came to finding the complex roots it became a bit difficult since i did not remember the equation used but after some quick research explaining the exercise the work became fairly easy.

2 Section 3.1 Power Functions Polynomial Functions

$2.11,15,17,21$

1. Find the long run behavior of each function as $\mathrm{x} \rightarrow$ and $\mathrm{x} \rightarrow$

$$
x^{4}
$$

Asf(x)approaches $-\infty$ xapproaches $-\infty$ As $f(x)$ approaches ∞ xapproaches ∞
15.Find the degree and leading coefficient of each polynomial

$$
\begin{gathered}
(2 x+3)(x 4)(3 x+1) \\
(2 x+3)(x-4)=2 x^{2}-5 x-12 \\
\left(2 x^{2}-5 x-12\right)(3 x+1) \\
\left(6 x^{3}-13 x^{2}-41 x-12\right.
\end{gathered}
$$

Degree $=3$ Leading cf $=6$

17 Find the long run behavior of each function as $\mathrm{x} \rightarrow$ and $\mathrm{x} \rightarrow$

$$
2 x^{4} 3 x^{2}+x 1
$$

As $f(x)$ approaches $-\infty$ xapproaches $-\infty$
Asf(x)approaches ∞ xapproaches $-\infty$
21 What is the maximum number of x-intercepts and turning points for a polynomial of degree 5?
Total number equals 4
Comments
This was pretty simple, finding long behavior is easy as soon as you put it in graph form and working with degrees is easy.

3 Section 3.2 Quadratic Functions

3.1 7,13,20,27

7 For each of the follow quadratic functions, find a) the vertex, b) the vertical intercept, and c) the horizontal intercepts.

$$
y(x)=2 x^{2}+10 x+12
$$

A- Vertex (-2.5,-0.5)
B- Horizontal intercepts $(-3,0)(-2,0)$
C- Vertical Intercepts $(0,12)$
13 Rewrite the quadratic function into vertex form.

$$
\begin{gathered}
f(x)=x^{2}-12 x+32 \\
x^{2}-12 x+(-6)^{2}-(-6)^{2}+32 \\
(x-6)^{2}-(-6)^{2}+32 \\
f(x)=(x-6)^{2}-4
\end{gathered}
$$

20 Write an equation for a quadratic with the given features $x-$ intercepts $(2,0)$ and $(-5,0)$, andyintercept $(0,3)$

$$
\begin{gathered}
f(x)=a(x-2)(x+5) \\
3=a(-2)(5)
\end{gathered}
$$

$F(x)=-0,3(x-2)(x+5)$
27 A rocket is launched in the air. Its height, in meters above sea level, as a function of time, in seconds, is given by $h(t)=4+.9 t^{2}+$ 29t234.A-234
B-4795feet
Comments
This was pretty simple, only had trouble with exercise 27 as i did not know how to use the information to find desired outcome.

4 Section 3.3 Graphs of Polynomial Functions

$4.1 \quad 19,31$

19 Solve each inequality.

$$
\begin{gathered}
(x 3)(x 2)^{2}>0 \\
2 x^{2}-10 x+12 \\
2(x-2)(x+3 \\
x<2 \text { or } x>3
\end{gathered}
$$

31 Write an equation for a polynomial the given features.

A Degree 3. Zeros at $x=-2$, $x=1$, and $x=3$. Vertical intercept at $(0,-4)$

$$
\begin{gathered}
a x^{3}+b x^{2}+c x+d \\
g(x)=a x^{3}+b x^{2}+c x+d \\
g(-2)=-, g(1)=0, g(3)=-, g(4)=0
\end{gathered}
$$

Comments

This was pretty simple, had to be careful when i was factoring out the equation to make sure i get the right input.

5 Section 3.4 Factor Theorem and Remainder Theorem

$5.121,22,1,3$

21 Below you are given a polynomial and one of its zeros. Use the techniques in this section to find the rest of the real zeros and factor the polynomial.

$$
x^{3}-6 x^{2}+11 x-6
$$

Zeroes at $\mathrm{x}=$
$\mathrm{x}=3$
$\mathrm{x}=1$
$\mathrm{x}=2$

22

$$
x^{3} 24 x^{2}+192 x 512
$$

Zeroes at $\mathrm{x}=$
$\mathrm{x}=-2$
$\mathrm{x}=-1.73$
$\mathrm{x}=1.73$
Comments
This was pretty simple, i had worked with finding zeroes back in high school

6 Section 3.5 Real Zeros of Polynomials

$6.1 \quad 1,3$

1 For each of the following polynomials, use Cauchy's Bound to find an interval containing all the real zeros, then use Rational Roots Theorem to make a list of possible rational zeros.

$$
f(x)=x^{3} 2 x^{2} 5 x+6
$$

Real zero at $\mathrm{x}=$
$\mathrm{x}=-2$
$\mathrm{x}=1$
$\mathrm{x}=3$
Possible zero at $\mathrm{x}=$
$\mathrm{x}=1$
$\mathrm{x}=2$
$\mathrm{x}=3$
$\mathrm{x}=6$

3

$$
x^{4}-9 x^{2}-4 x+12
$$

Real zero at $\mathrm{x}=$
$x=-2$
$\mathrm{x}=1$
$\mathrm{x}=3$
Possible zero at $\mathrm{x}=$
$\mathrm{x}=1$
$\mathrm{x}=2$
$\mathrm{x}=3$
$\mathrm{x}=6$
$\mathrm{x}=4$
$\mathrm{x}=12$

7 Section 3.7 Rational Functions

$7.1 \quad 5,6$

5 For each function, find the horizontal intercepts, the vertical intercept, the vertical asymptotes, and the horizontal asymptote. Use that information to sketch a graph.

$$
\frac{2 x-3}{x+4}
$$

Horizontal Asymtope (0,2)
Vertical asymtope ($-4,0$)
x intercept $(1.5,0)$
Y intercept ($0,-0.75$)
6

$$
\frac{x-6}{3 x-1}
$$

Horizontal Asymtope (0,2)
Vertical asymtope ($-4,0$)
x intercept $(1.5,0)$
Y intercept ($0,-0.75$)
This was fairly simple, got a little lost when trying to find the asymtope points as its been a while but the work was easy

